Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of High Strength Steel Sheet with Excellent Stretch Flange Formability for Automobile Application

1994-03-01
940943
With the aim of improving stretch-flange formability by further reducing carbides in steel, the authors studied the hole expansion ratio of a steel consisting entirely of ferrite and the factors governing the hole expansion ratio. Ultra low carbon steels adding Ti and/or Nb showed a higher hole expansion ratio than conventional steels, but their hole expansion ratio was not higher than the hole expansion ratio of bainitic steel reported before1). On the other hand, it was found from study of the relationship between hole expansion ratio and r-value of various steels, including cold-rolled interstitial-free steels, that the hole expansion ratio of a steel consisting only of the ferrite phase is strongly influenced by the minimum r-value and n-value and that it improves as the r- and n-values increase. The steel added Ti and/or Nb has a strong anisotropy of r-value, hence its minimum r-value is small. This is disadvantageous to hole expansion ratio.
Technical Paper

Perforation Corrosion of Automobiles - Field Car and Laboratory Investigation

1993-10-01
932367
In order to clarify the effect of design and materials of the hem as well as the climatic factors on perforation corrosion of the automobile doors, field car and laboratory investigation has been carried out Field car investigation revealed that corrosion of the hem can be minimized by using two side galvanized steel plus adhesives. The ratio of wet/dry environment was evaluated in laboratory on hemmed sample, and it was found that the design of the hem in conjunction with the various wet/dry ratio affected the corrosion rate differently.
Technical Paper

Predictive Evaluation of Sheet Metal Forming Limit Using 3-D FEM

1993-03-01
930519
This paper describes the deformation analysis of hemispherical punch stretching and square shell drawing, using 3-D finite element program “ROBUST”. The effects of material properties and process factors on cup height to punch force relation, and strain distributions on formed parts were investigated. The calculated values give considerably good agreement with experimental measurements from LDH, FLD and square shell tests. The results can be expected to contribute to predictive evaluation of forming limits using computer simulation.
Technical Paper

Extremely Formable Cold Rolled Sheet Steel with Ultra-High Lankford and n Values - Metallurgy and Formabilities

1993-03-01
930783
Extremely formable cold sheet steel with an ultra-high Lankford value of more than 2.5 and an n value of more than 0.27 has been developed. This steel is obtained due to the following factors; using extremely pure IF (Interstitial free) steel, immediate rapid cooling upon completion of rolling in the hot rolling process, a high reduction in the cold rolling process, and a high soaking temperature in the continuous annealing process. This steel sheet shows excellent deep drawability and stretch formability compared with conventional steel sheet (former IF steel and low carbon aluminum-killed steel) as a result of evaluating the limiting drawing ratio and limiting dome height, respectively. This excellent formability is also shown by the model forming tests for simulating the actual stamping of an oilpan and a side-panel. Furthermore, this steel shows the same spot-weldability as that of former IF steel, and zinc phosphatability similar to that of low carbon aluminum-killed steel.
Technical Paper

Recent Developments in Press Formability of Aluminum Alloy Sheets for Automotive Panels

1993-03-01
930705
Aluminum alloy sheets are used for automotive body-panels, but their small Young's modulus results in inferior shape-fixability than conventionally-applied steel sheets with similar strengths. Smaller radius of curvature, indicating better shape-fixability, is found at the center of a panel press-formed with higher blank holder force (BHF). Higher force can be applied for press-forming of alloy sheets with larger strain-hardening exponent (n value) induced by an increased addition of Mg. Recently-developed 5000 series alloy sheets containing 5.5 pct Mg and 0.3 pct Cu have an elongation over 33 pct at an ultimate tensile strength of 270 MPa and can be press-formed with better shape-fixability.
Technical Paper

Properties of a Newly Developed Organic Composite Coated Steel Sheet for Automotive Use

1992-02-01
920172
The newly developed sheet steel lightly coated with an organic composite is as follows. Zn-Ni alloy plated sheet steel with a coating weight of 30 g/m2 and average Ni concentration of 11.5 ∼12.0 % is chromated through electrolysis. The coating weight of chromate film is 50 ∼90 mg/m2 in Cr. Furthermore, emulsified olefin-acrylic acid copolymer resin mixed with colloidal silica of particle size 7 ∼8 nm applied to a thickness of 1.0 ∼1.8 μm. Olefin-acrylic acid copolymer resin and colloidal silica are mixed at the rate of 100 and 30 (parts by weight). It maintains excellent corrosion resistance even after forming, C-ED paint corrosion resistance and paint adhesion. Furthermore, it has excellent perforation resistance. The product has excellent weldability and is well suited to continuous forming, too.
Technical Paper

Application of Vibration Damping Steel Sheet for Autobody Structural Parts

1992-02-01
920249
As a demand for vehicles of higher functionality grows, automakers and material suppliers are devoting increasing efforts to develop technologies for greater safety, lighter weight, higher corrosion resistance, and enhanced quietness. The resin-sandwiched vibration damping steel sheet (VDSS), developed as a highly functional material for reducing vehicle vibration and noise, has been used for oil pans1) and compartment partitions2). First applied for a structural dash panel of the new Mazda 929, a Zn-Ni electroplated VDSS which allows direct electric welding has contributed to greater weight reduction as well as improved quietness.
Technical Paper

Study of Formable High Strength Steel Sheets for Automotive Panels

1992-02-01
920247
Weight reduction of automobiles is one of the most highlighted subjects in automobile industry from the energy saving and clean environment points of view. A typical approach for the purpose is to use high strength steel sheets as well as optimizing designs and using low density materials. It is not, however, easy to apply high strength steel sheets to automotive panels because of their strict requirement for the shape-fixability although a high dent resistance is also required. Besides the use of bake hardening steels, two different high strength steel sheets, which are a continuously annealed extra-low carbon titanium-added IF steel and a low carbon TRIP steel which contains about six volume% of austenite, were assessed for the application to automotive panels in combination with a tension-controled press-forming technique and showed as good shape-fixability as a conventional box-annealed aluminum-killed DDQ steel sheet when high blank-holding-forces were applied.
Technical Paper

The Development of Vibration Damping Steel Sheet For Automotive Use

1989-02-01
890708
Vibration Damping Steel Sheet (VDSS) for automotive use, which has a three layer structure of steel/viscoelastic resin/steel, has been studied. For automotive body panels, VDSS is required to have not only high vibration damping capability but also other properties such as bonding strength, formability, weldability and durability. In this research, the effect of resin layer on these properties was studied. It is found that VDSS which satisfies these properties can be made from thermosetting resin involving metal particles.
Technical Paper

An Evaluation of Fatigue Strength for Various Kinds of Spot-Welded Test Specimens

1988-02-01
880375
Eight kinds of the spot-welded test specimens were studied to obtain the basic fatigue data on steel sheets for car bodies. Analytical methods such as the strain amplitude at outside and inside plates close to the nugget, the maximum nominal stress and Kθmax criteria of fracture mechanics were used. The authors propose that the ratio of strains at two points around the nugget can provide evaluation of the bending load and estimation of the fatigue strength.
Technical Paper

Properties of Zn-Fe Alloy Electroplated Steel Sheets

1984-02-01
840214
We have taken notice of Zn-Fe alloy electroplating with an eye to developing new corrosion-resistant steel sheets for automotive use with both cosmetic corrosion resistance and perforating corrosion resistance, and as a result of investigations into its paintability and corrosion resistance over the whole range of its compositions, we have come to a conclusion that steel sheets with two-layer Zn-Fe alloy electroplating that consists of a thin upper layer with a 75 to 85% Fe content and a lower layer with a 10 to 20% Fe content is the best choice.
Technical Paper

High Temperature Carburizing Steel Bars for Saving Energy Consumption in the Automobile Industry

1982-02-01
820127
Carburizing heat treatment is one of the automobile component manufacturing steps, which consumes a large amount of energy. Raising the carburizing temperature can shorten the carburizing time and save the energy, but involves the risks of grain coarsening and attendant property deterioration. The authors have clarified the precipitation behavior of aluminum nitride (A1N) in the automobile gear manufacturing process and the optimum precipitation of A1N in as-rolled steel bars to prevent the grain coarsening. Through the application of the controlled rolling technique to ensure the optimum precipitation of A1N in continuously cast steel of uniform chemical composition, the authors have substantially saved energy while maintaining high quality, and developed a high-temperature carburizing steel expected to minimize and stabilize quenching strains.
Technical Paper

High-Strength Cold-Rolled Steels Produced by Continuous Annealing and Their Automotive Applications

1981-02-01
810028
In continuous annealing, accelerated cooling methods have recently found practical application in addition to conventional gas jet cooling or water jet quenching method. Moderate cooling rate of gas jet cooling or accelerated cooling makes it possible to utilize new high-strength steels with excellent properties. The faster cooling rate deteriorates ductility of steels. These newly developed steels are improved rephosphorized steels with high r̄-value and high bake hardenability, dual phase steels with superior ductility, Ti-stabilized high-strength steels with very high r̄-value, grain boundary hardening steels employing low temperature annealing, and unique ultra high-strength steels. This paper describes properties and process factors of these steels, and their applications to automotive.
X